Table II. Substituted 4-Thiazolidones and Their Anticonvulsant Activity

No.	Ar	$Mp, a \circ C$	Yield, %	Molecular formulab	Protection, %	Mortality after 24 hr, %
 1	C ₆ H ₅	117	62	$C_{19}H_{20}N_{2}O_{3}S$	30	60
2	o-CH ₃ C ₆ H ₄	126	55	$C_{20}H_{22}N_2O_3S$	70	20
3	m -C H_3 C_6 H_4	118	60	$C_{20}H_{22}N_2O_3S$	30	40
4	p-CH ₃ C ₆ H ₄	160	64	$C_{20}H_{22}N_2O_3S$	40	50
5	$3,4-(CH_{3})_{2}C_{6}H_{3}$	175	62	$C_{21}H_{24}N_2O_3S$	10	70
6	o-OCH ₃ C ₆ H ₄	90	54	$C_{20}H_{22}N_2O_4S$	50	30
7	p-OCH ₃ C ₆ H ₄	147	62	$C_{20}H_{22}N_2O_4S$	10	60
8	p-ClC ₆ H ₄	150	60	$C_{19}H_{19}CIN_2O_3S$	60	50
9	p-BrC H ₄	153	62	$C_{19}H_{19}BrN_2O_3S$	30	60
10	α - $C_{10}H_7$	128	58	$C_{23}H_{22}N_2O_3S$	50	40

a, b See footnotes to Table I.

Acknowledgments. The authors wish to express their thanks to Professor K. P. Bhargava and Dr. J. P. Barthwal for their advice and encouragement and to Dr. M. L. Dhar and Dr. Nitya Anand of the Central Drug Research Institute, Lucknow, for providing microanalysis facilities. Grateful acknowledgment is made to Dr. Edwin E. Hays, Gruppo Lepetit, Northridge, Calif., for a generous gift of research chemicals.

References

- R. Kumar, T. K. Gupta, and S. S. Parmar, J. Pract. Chem., 312, 201 (1970).
- (2) S. S. Parmar, C. Dwivedi, A. Chaudhari, and T. K. Gupta, J. Med. Chem., 15, 99 (1972).

Synthesis of N'-Substituted Arylsulfonylpyrazoles, Their Anthelmintic Activity, and the Cytotoxicity of Some Hydrazides†

H. G. Garg* and Narendrajit Kaur

Department of Chemistry, University of Roorkee, Roorkee, India. Received September 10, 1971

Our continued interest in the synthesis of biological active heterocycles has led us to study the synthesis and anthelmintic activity of N'-substituted arylsulfonyl-3,5-dimethyl-4-arylazopyrazoles. These compounds displayed anthelmintic and cytotoxicity activities of different magnitudes. All are apparently nontoxic to mice at the dosages used.

Experimental Section

Melting points, taken with a Kofler hot-stage apparatus, are uncorr. Where analyses are indicated only by symbols of the elements, analytical result obtd for those elements were within $\pm 0.4\%$ of the calcd values.

2,3,4-Pentanetrione-3-arylhydrazons, ¹ cinnamic acids, and hydrazides, ² 3-nitro-4-methoxybenzenesulfonylhydrazide, ³ 3-chloro-4-methoxybenzenesylfonylhydrazide, ³ and 2,5-dichlorobenzenesulfonylhydrazide⁴ were prepd by standard procedures.

2-Methoxy-3,5-dimethyl- and 2-Chloro-5-carboxybenzenesulfonyl Hydrazide. A soln of 2-methoxy-3,5-dimethyl- and 2-chloro-5-carboxybenzenesulfonyl chloride in EtOH was treated with $NH_2NH_2-H_2O$ (98%) at 0°. It was left at room temp for several hr, when

Table I. N^1 -Arylsulfonyl-3,5-dimethyl-4-arylazopyrazoles

			Yield,			_
No.	R_1	R_2	%	Mp, °C	Color ^a	Formula ^b
	F	₹2				
	/	\pm				
	<())-N	=N(C-M	е	
	`		Me-(" N		
				/Ņ/		ı
				so/	- X	
				502	_/	
1	3-NO,-4-OMe	2-C1	65	168-169	Ly	$C_{18}H_{16}CIN_5O_5S$
2	3-NO ₂ -4-OMe	4-OMe	95	194-195	y	$C_{19}H_{19}N_5O_6S$
3	3-NO ₂ -4-OMe	$4-NO_2$	80	167-168	0	$C_{18}H_{16}N_{6}O_{7}S$
4	3-C1-4-OMe	2-Cl	65	150-151	Y	$C_{18}H_{16}CI_2N_4O_3S$
5	3-Cl-4-OMe	2-NO ₂	76	224-225	R	$C_{18}H_{16}CIN_5O_5S$
6	3-C1-4-OMe	4-OMe	70	161-162	Y	$C_{19}H_{19}CIN_4O_4S$
7	2-OMe-5-Cl	2-NO ₂	80	200-201	R	$C_{18}H_{16}CIN_5O_5S$
8	2,5-CI	2-NO ₂	90	190-191	DBn	C ₁₇ H ₁₃ Cl ₂ N ₅ O ₄ S
9	2-Cl-5-COOH	$2-NO_2$	96	220-221	BR	$C_{18}H_{14}CIN_5O_6S$
10	2-OMe-3,5-Me	4-OMe	96	154-155	Py	$C_{21}H_{24}N_4O_4S$

^aB, brick; Bn, brown; D, dark; L, light; O, orange; P, pale; R, red; Y, yellow. ^bAll compds were analyzed for C, H, N, S.

Table II. Biological Activities of N^1 -Arylsulfonylpyrazoles

	%	act	ivit	y at	highest teste	ed dosage ^b		
	In Vivo				In V	7itro		
_			ice		Manure			
No.a	Tg	N	С	0	R/Lv/Ad	Hc/Ts	F	Dose, ppm
1		0	0	60	75/0/0	100/100	0	100
2	0	0	0	0	•			400 mg/kg
3	0	0	0	0	50/0/0	100/100	0	100 mg/kg
4		0		0	0/0/0	60/90	0	100
5	0	0	0	0	0/0/0	0/50	0	100, 400 mg/kg
6	0	0	0	50				400 mg/kg
7	0				0/0/0	50/50	0	100
8	0				0/0/0	0/50	0	100
9	0	0	0	50				400 mg/kg
10	0	0	0	0				100

^aSame as Table I. ^bTg, Toxoplasma gondii-RH strain in mice prevention (of mortality); N, nematodes (trichostrongyles in mice); C, cestoses (tapeworms in mice); O, oxyurids (in mice); R, % repellency (of face fly oviposition); Lv, % contact activity on face fly larvae (prevention of pupation); Ad, % kill of adult face flies and/or pupae which fail to hatch; Hc, % inhibition of Haemonchus contorus larvae development; Ts, % inhibition of Trichostorgylus spp. larvae development; F, % inhibition of fungus growth.

crystals of the hydrazide were obtd. Recrystn from EtOH gave a colorless product, mp $116-117^{\circ}$. 2-MeO-3,5-Me₂ deriv. Anal. (C₉H₁₄N₂O₃S) C, H, N. 2-Cl-5-CO₂H deriv, mp 87° . Anal. (C₇H₇ClN₂O₄S) C, H, N.

N'-Substituted Arylsulfonyl-3,5-dimethyl-4-arylazopyrazoles. A hot soln of arylsulfonylhydrazide (0.01 mole) in EtOH (30 ml)

^{*}To whom inquiries should be addressed at Harvard University Medical School, Laboratory for Carbohydrate Research, Massachusetts General Hospital, Boston, Mass. 02114.

[†]This work was supported by a grant from The Chemical Society, London. Taken from the dissertation submitted by N. K. in partial fulfillment of the requirements for a Master of Science degree, University of Roorkee, Roorkee, India, 1971.

Table III. Cytotoxicity of Hydrazide Derivatives against KB Strain of Human Carcinoma of the Nasopharynx

No.	R ₁	R ₂	Mp,°C	ED _{so} , μg/ml				
	$BzNHCCONHN = C - R_1^d$							
	Ċ⊣	R_2						
1	$2,4-(OH)_2^a$	3-NO ₂ -4-(OCH ₃)	265	>10				
2	$2,4-(OH)_2-5-NO_2^b$	3-NO ₂ -4-(OCH ₃)	160	22				
3 4	2-(OH) ₄ -Me-5-Cl ^C	3-NO ₂ -4-(OCH ₃)	187	18				
	3-Me-4-OH ^c	3-NO ₂ -4-(OCH ₃)	278	84				
5	2-ОН-5-С1 ^с	3-NO ₂ -4-(OCH ₃)	188	>100				
6	4-OH ^c	3-NO ₂ -4-(OCH ₃)	270	>100				
7.	2-OH-3-Me ^c	3-NO ₂ -4-(OCH ₃)	280	>100				
8	2-OH ^c	3-NO ₂ -4-(OCH ₃)	260	>100				
9	2-OH ^b	3,4-(OCH,O)	173	93				
10	4-OH ^b	3,4-(OCH,O)	197	24				
11	2-(OH)-3-Me ^b	3,4-(OCH ₂ O)	225	>100				
12	3-Me-4-(OH) ^b	3,4-(OCH ₂ O)	192	23				
13	2-(OH)-5-Cl ^D	3,4-(OCH ₂ O)	183	19				
14	2,4-(OH) ₂ ^b	3,4-(OCH ₂ O)	215	23				
15	2,4-(OH) ₂ -5-Br ^D	3,4-(OCH ₂ O)	240	47				
16	$2,4-(OH)_2-5-NO_2^{b}$	3,4-(OCH ₂ O)	225	24				
17	2-(OH)-4-Me-5-Cl ^b	3,4-(OCH ₂ O)	200	59				
18	2-(OH)-4,6-Me ₂ -5-Cl ^b	3,4-(OCH ₂ O)	221	59				

^aDMF. ^bAlkali diluted with saline. ^cSaline. ^dSupplied by R. P. Mahesh.

contg $\rm H_2SO_4$ (2 ml) was added to 2,3,4-pentanetrione 3-arylhydrazone (0.01 mole) in a mixt of EtOH-AcOH on a steam bath for several hr. It was left overnight at room temp, when crystals sepd. This was recrystd from DMF-EtOH (Table I).

Acknowledgments. The authors thank Dr. H. B. Wood, H. W. Bond of Cancer Chemotherapy, NIH, Bethesda, Md., and Dr. W. C. McGuire of Phillips Roxane, Inc., for their cooperation and for the screening data.

References

- (1) H. G. Garg and P. P. Singh, J. Med. Chem., 11, 1103 (1968).
- (2) S. Kumar and R. P. Mahesh, J. Indian Chem. Soc., 44, 983 (1967).
- (3) R. J. W. Cremlyn and R. Hornby, J. Chem. Soc., 10, 1341 (1969).
- (4) Z. El. Hewchi and F. Ringer, J. Prakt. Chem., 16, 297 (1962); Chem. Abstr., 58, 5671 (1963).

Preparation and Progestational Activity of 6-Cyano-16-methylene- 17α -hydroxy-4,6-pregnadiene-3,20-dione 17-Acetate and Related Compounds

T. L. Popper,* H. P. Faro, F. E. Carlon, and H. L. Herzog

Natural Products Research Department, Schering Corporation, Bloomfield, New Jersey 07003. Received September 22, 1971

In recent years considerable attention has been given to the preparation of 6-substituted-6-dehydroprogestagens among which 6-chloro-17 α -hydroxy-4,6-pregnadiene-3,20-dione 17-acetate (1, chlormadinone acetate) and 6-methyl-17 α -hydroxy-4,6-pregnadiene-3,20-dione 17-acetate (2, megestrol acetate) have found use in contraceptives. The progestational potentiating effect of the 16-methylene moiety has been demonstrated sometime ago. ¹

As an extension of our investigations² on the progestational activity of 6-dehydro-16-methylene-17α-acetoxy-progesterone derivatives in the present communication, we wish to report the synthesis of 6-formyl-6-dehydro-16-

Table I. Progestational Activitya, b

Compd	Activity		
3	1 ^c		
4	5.8		
7	5.8 0.45		
8	2.1		
11	1.8		

^aProgesterone = 1. ^bProgestational activity was detd in immature rabbits by the method of McPhail.⁷ The compounds were dissolved in sesame oil for im administration. Progesterone in sesame oil was given im. The statistical analysis for the progestational assays utilized the randomized Bloch analysis of variance with Dunnett's and Duncan's multiple comparison procedure (see ref 8). ^cApproximate value.

methylene- 17α -acetoxyprogesterone (3) and of 6-cyano-6-dehydro-16-methylene- 17α -acetoxyprogesterone (4).

The preparation of the 6-formyl 3 was carried out by converting the ethyl enol ether 5³ by the Vilsmeier reaction† to the 6-formyl enol ether 6. On treatment with dichlorodicyanobenzoquinone (DDQ) in 95% aqueous acetone⁵ 6 afforded the desired 3 in 45% yield.

In order to prepare the 6-cyano derivative 4 the 6-formyl enol ether 6 was used as starting material. Reaction of 6 with NH₂OH gave the oximinomethyl compound 7 which when treated with NaOAc in refluxing Ac₂O afforded the 6-cyano enol ether 8.[‡]

In contrast to the 6-formyl enol ether 6, the 6-cyano enol ether 8 was completely inert toward DDQ. Even forcing conditions (large excess of DDQ in refluxing dioxane for 48 hr) failed to give any of the desired 4. Only small amounts of the 6-cyano- $\Delta^{1,4,6}$ -trienone and highly colored materials (probably DDQ adducts) could be isolated.

In order to overcome the difficulties in the dehydrogenation of 8, the oximinomethyl enol ether 7 was treated with DDQ in 95% aqueous acetone. Rapid conversion to the corresponding dienone 9 occurred and the latter compound was isolated in 68% yield. Reaction of 9 with POCl₃ in pyridine afforded the desired 6-cyano dienone 4 in 70% yield.

[†]Burn, et al., 4 described the prepn of the analogous 3-methoxy- $\Delta^{3,5}$ -6-formyl compd from the corresponding 3-methyl enol ether.

 $[\]ddagger A$ British patent 6 describes the preparation of the analogous 3-methoxy- $\Delta^{3,5}\text{-}6\text{-}cyano$ compound.